The PTV program generates several files for each frame.
1 File Extensions
Each file is encoded according to the Experiment and Frame number as follows:
****. XXXYYYYY, where **** is the file name (see further on), XXX is the experiment number and $Y Y Y Y Y$ is the frame number in the experiment.
e.g. cam1.18612740 is file cam1 for frame 12,740 in experiment 186.

2 File names
a In the Image folder
The image folder contains data from all (4) cameras in the experiment, each frame has 8 files (${ }^{*} f r a m e *$ is the extension as described above):
i Image Files cam1.*frame*, cam2.*frame*, cam3.*frame* and cam4.*frame* - are files representing the images encoded in tiff format. Thus e.g. cam1.18612740 is the tiff image shot from camera 1 at frame 12740 of experiment 186.

Camera Placement:

A typical placement of 4 camera experiments is as follows:

It is, however, possible that in a given experiment the camera placement will differ, and this should be verified before processing the data.

ii Targets Files

Each image file has a target file associated with it, and named the same as the image with _targets added (e.g. cam1_targets.18612740).
These files contain information on all the detected particles in the image, and is formatted as a tab-delineated text file, with the following structure:

The first row contains only one column, specifying the number of particles detected in the image.

The other rows contain 8 columns each:
Particle number, x _location, y_location, area (pixels), x_length(pixels), y_length(pixels), sum of grayscale values in the particle, and correspondence.

The particle ID is arbitrary, and is given by the detection algorithm.
The \mathbf{x} and \mathbf{y} location are the location of the particle center of mass, and can thus have sub-pixel value

The area is the actual number of pixels taken up by the particle

The \mathbf{x} and \mathbf{y} length are the lengths of the major and minor axes of the particle (i.e. the length and the height of the particle if it were rotated to a horizontal position)

The sum of grayscale is the sum of all greyscale values of the particle

Correspondence is a flag that gets 1 if this particle was detected in more than one camera (i.e. if the particle is located on the intersection of 2 or more epipolar lines).
A particle that with a positive number in the correspondence flag gets an ID in the rt_is file (see below), and is located at the corresponding line there.
b In the Res folder
The res folder contains the tracking results from the whole sequence, and has 3 files per frame.
i $\mathbf{r t}$ is Files
These files contain the summary of the particles found in the frame, formatted as a tab-delineated text file, with the following structure:

The first row contains only one column, specifying the number of particles in the file.

The other rows contain 8 columns each:
Particle number, x _location, y_location, z_location, id1, id2, id3, id4

Theparticle ID is arbitrary, and is given by the tracking algorithm.
Thex, \mathbf{y} and \mathbf{z} location are the location of the particle in 3d, measured in mm .
id1, id2, id3, and id4 are the particle IDs of that particle in corresponding camera frames. If the particle was not detected in a certain frame, its correspondingid is -1 .

Note: rt_is files start with 1 and not 0 , so the IDs need to be incremented by 1 !
ii ptv is Files
These are files used to track particles, and is essentially similar to the rt_is file, but with the following columns:
previous_particle, next_particle, x_location, y_location, z_location
Previous Particle is the particle ID of that particle in the previous frame, or -1 if it was first detected in the current frame.

Next Particle is the particle ID of that particle in the next frame, or -2 if it was not detected in the next frame.

iii added Files

These are files used to track particles added to the list of particles during the forward-backward-forward projection. It is essentially the same as the corresponding ptv_is file (see above), with the addition of a last column which is (always?) 4 , and could signify the number of cameras over which the particle was identified.

3 Example

The following excerpt is taken from real data, and will serve to demonstrate the principle described above, in finding the corresponding particles in 2 cameras and 2 consecutive frames.

Cam1.1881570 targets	Cam2.1881570 targets
	0156.295270 .507013414188915
$1510.7900727 .010381 \begin{array}{llllll}12 & 12 & 4966-1\end{array}$	1293.7447888 .5812458873522
$2526.8192731 .3517 \quad 68 \quad 9 \quad 105031-1$	
3283.4068857 .8956 98 10146061	3167.0787899 .06671391313159590
4421.0602858 .3607618895011	4511.2831904 .070310713129909
$5 \begin{array}{lllllll}586.3214885 .5790 & 91 & 11 & 127341 & 2\end{array}$	5374.7202928 .07998012107662
$6436.2219897 .8610 \quad 7212 \quad 86657$	6811.6678958 .1815175191811543
7423.2989 934.9218 58 9 ${ }^{7} 84441$	7768.1635968 .973311013159019
$8286.2853935 .59727511 / 96007-1$	$8309.6357971 .28766^{63} 11186145-1$
9328.5704953 .6870921413135710	9637.1509978 .0058 65 141495818 -1
$10803.2237956 .156193 / 10125853$	$10169.2018984 .0282931414108309-1$
	$\begin{array}{lllllllllll}11 & 638.4713 & 985.9006 & 46 & 11 & 7036\end{array}$
$\begin{array}{lllllll}12 & 788.3494 & 962.1106 & 65 & 11 & 124641 & -1\end{array}$	$\begin{array}{lllllllllllllllll}12 & 511.7243 & 987.4343 & 87 & 12 & 11 & 8494 & -1\end{array}$
13587.7373 965.4007 6410	$13343.5862992 .36411011314147032-1$
$\begin{array}{llllllllllllllllllll}14 & 606.0490 & 966.3976 & 96 & 11 & 14 & 7184 & 0\end{array}$	
$\begin{array}{llllllllllllllllll}15 & 743.8308 & 968.9774 & 47 & 12 & 8 & 3930\end{array}$	
$\begin{array}{llllllllllll}16 & 438.4469 & 976.9826 & 74 & 12 & 8 & 7248\end{array}$	
rt is. 1881570	ptv is. 1881570
	$\begin{array}{llllll}-1 & -2 & 19.760 & -21.566 & 13.097\end{array}$
	$\begin{array}{lllll}-1 & 1 & 27.843 & -21.650 & 10.756\end{array}$
$\begin{array}{llllllllll}3 & 14.160 & -21.697 & -8.902 & 5 & 4 & 7 & 10\end{array}$	$\begin{array}{llllll}-1 & 2 & 14.160 & -21.697 & -8.902\end{array}$
	$\begin{array}{llllll}-1 & 3 & 5.371 & -21.672 & -3.974\end{array}$
5 5-7.360 31.226 0.295 000000	$\begin{array}{llllll}-1 & 4 & -7.360 & 31.226 & 0.295\end{array}$
$6630.957-21.673$ 7.585 $10 / 64^{6}$-1	$\begin{array}{llllll}-1 & 5 & 30.957 & -21.673 & 7.585\end{array}$
	$\begin{array}{lllll}-1 & 6 & -6.806 & -21.675 & -13.673\end{array}$
Cam1.1881571 targets	Cam2.1881571 targets
$\begin{array}{lllllllll}0 & 189.6951 & 66.3870 & 70 & 13 & 9 & 4824 & 4\end{array}$	$\begin{array}{lllllllllll}0 & 157.8065 & 65.4092 & 137 & 15 & 189070\end{array}$
1508.1175726 .8447801313124978 -1	$1293.7125888 .590144 \begin{array}{lllll} & 4539\end{array}$
2524.1867730 .6819 64 $90104970-1$	$2309.0709889 .843681 \quad 10108199$
3283.4493858 .08049810146011	3167.2258899 .048413913159605
	$4511.2097904 .053810713129938 \quad 2$
$5586.3334885 .6771{ }^{5} 9011127271 \quad 2$	5374.8435928 .06568013107670
$6436.3070897 .914571{ }^{712} 886622 / 3$	6812.0149957 .9067176191811357
$7423.4518934 .85045818184500-1$	7767.9957968 .816110513158858
$8286.4063935 .79377^{76} 11195989-1$	$8309.8046971 .12596212 \quad 76202-1$
	9637.3011977 .79516214105577
10803.4701956 .2263 95 10125886	$\begin{array}{llllllllll}10 & 169.2734 & 984.0196 & 92 & 14 & 9856\end{array}$
	$\begin{array}{llllllllllll}11 & 638.7861985 .6696 & 47 & 12 & 7463\end{array}$
$\begin{array}{llllllll}12 & 788.7545 & 961.8620 & 69 & 11 & 12 & 4796 & -1\end{array}$	12511.6275987 .4053 90 $1311118595-1$
$13587.7944965 .431565 / 10{ }^{10} 58811-1 /$	
$\begin{array}{lllllllllllllllllllll}14 & 743.8123 & 969.0197 & 45 & 12 & 83862\end{array}$	
	$\begin{array}{llllllll}15 & 375.6097 & 1011.6586 & 82 & 13 & 8 & 8630 & -1\end{array}$
rt is. 1881571	ptv is. 1881571
$\begin{array}{llllllll}1 & 19.784 & -21.622 & 13.212 & 15 & 11\end{array}$	$\begin{array}{llllll}-1 & 0 & 19.784 & -21.622 & 13.212\end{array}$
$\begin{array}{lllllllllll}2 & 27.839 & -21.655 & 10.724 & 14 & 7 & 2 & 4\end{array}$	$\begin{array}{lllll}1 & 27.839 & -21.655 & 10.724\end{array}$
$\begin{array}{lllllllllll}3 & 14.157 & -21.700 & -8.907 & 5 & 4 & 7 & 10\end{array}$	$\begin{array}{llllll}2 & 2 & 14.157 & -21.700 & -8.907\end{array}$
$\begin{array}{llllllllll}4 & 5.377 & -21.672 & -3.972 & 6 & 5 & 5 & 8\end{array}$	$\begin{array}{llll}5.377 & -21.672 & -3.972\end{array}$
$\begin{array}{lllllllllllllllllllll}5 & 7.264 & 31.515 & 0.241 & 0 & 0 & 0 & 0\end{array}$	$\begin{array}{llll}-7.264 & 31.515 & 0.241\end{array}$
	$\begin{array}{lllll}5 & 30.973 & -21.670 & 7.581\end{array}$
	$\begin{array}{llllll}6 & 6 & -6.799 & -21.677 & -13.661\end{array}$

The fourth row in cam1.1881570 (particle 3) has correspondence, and is linked to the $7^{\text {th }}$ row ($0-$ based 6 is 1 -based 7, see note above) in rt is. 1881570 . From it we learn that the corresponding particle in camera 2 in the same frame is ID 3 (marked yellow).
Next we look at the corresponding row in ptv is. 1881570 , to find that this particle was not tracked in the previous frame (this is indeed the first frame of the sequence), and that in the next frame it is located in row 7 (ID 6) in $\underline{r t}$ is.1881571, from which we proceed to identify the particles in cam1.1881571 and cam2.1881571.

Another, similar process of identification with a different particle is marked green in the table.

