Skew lines midpoint position

Yosef Meller

October 21, 2019

The 3D point position of a correspondence tupel (i.e. a number of corresponding 2D points each from a different camera) is obtained by averaging the positions of points in the middle of the shortest-distance line between rays going from each two 3 D camera positions into the corresponding image-plane points. Therefore, the most basic calculation here is of the midpoint between the two rays.
Let $\vec{p}_{1}=\vec{x}_{1}+r_{1} \vec{u}_{1}$ and $\vec{p}_{2}=\vec{x}_{2}+r_{2} \vec{u}_{2}$ denote two points along two skew lines (i.e. lines that do not intersect and are not parallel), where u_{i} are unit vectors. Denote the segment connecting them $\vec{k}=\vec{p}_{2}-\vec{p}_{1}$, and for convenience define $\vec{d}=\vec{x}_{2}-\vec{x}_{1}$. The terminology is sketched in figure 1 .
Simple vector arithmetics shows that $\vec{k}=-r_{1} \vec{u}_{1}+\vec{d}+r_{2} \vec{u}_{2}$.
The shortest segment connecting two skew lines is necessarily perpendicular to both, hence if p_{i} are the end points of that line, then $\vec{u}_{1} \cdot \vec{k}=\vec{u}_{2} \cdot \vec{k}=0$, yielding the equation system:

$$
\begin{aligned}
r_{1}-\left(\vec{u}_{1} \cdot \vec{u}_{2}\right) r_{2} & =\vec{u}_{1} \cdot \vec{d} \\
\left(\vec{u}_{1} \cdot \vec{u}_{2}\right) r_{1}-r_{2} & =\vec{u}_{2} \cdot \vec{d}
\end{aligned}
$$

The solution, easily obtained with pen and paper, is

$$
r_{1}=\frac{\left(\vec{u}_{1} \cdot \vec{u}_{2}\right)\left(\vec{u}_{2} \cdot \vec{d}\right)-\left(\vec{u}_{1} \cdot \vec{d}\right)}{1-\left(\vec{u}_{1} \cdot \vec{u}_{2}\right)^{2}}
$$

Figure 1: Skew lines

$$
r_{2}=\frac{\left(\vec{u}_{1} \cdot \vec{u}_{2}\right)\left(\vec{u}_{1} \cdot \vec{d}\right)-\left(\vec{u}_{2} \cdot \vec{d}\right)}{1-\left(\vec{u}_{1} \cdot \vec{u}_{2}\right)^{2}}
$$

To simplify and reduce calculations for the computer implementation, we first define α to be the angle between \vec{u}_{1}, \vec{u}_{2}. Then we can simplify the denominator using the known trigonometric properties of cross product and dot product ${ }^{1}$:

$$
1-\left(\vec{u}_{1} \cdot \vec{u}_{2}\right)^{2}=1-\cos ^{2} \alpha=\sin ^{2} \alpha=\left\|\vec{u}_{1} \times \vec{u}_{2}\right\|^{2}
$$

The numerator is simplified using the Binet-Cauchy identity ${ }^{2}$:

$$
\begin{aligned}
\left(\vec{u}_{1} \cdot \vec{u}_{2}\right)\left(\vec{u}_{2} \cdot \vec{d}\right)-\left(\vec{u}_{1} \cdot \vec{d}\right) & =\left(\vec{u}_{1} \cdot \vec{u}_{2}\right)\left(\vec{u}_{2} \cdot \vec{d}\right)-\left(\vec{u}_{2} \cdot \vec{u}_{2}\right)\left(\vec{u}_{1} \cdot \vec{d}\right)= \\
& =\left(\vec{u}_{1} \times \vec{u}_{2}\right) \cdot\left(\vec{d} \times \vec{u}_{2}\right)
\end{aligned}
$$

and similarly for the r_{2} numerator, to get the final form

$$
\begin{aligned}
& r_{1}=\frac{\left(\vec{u}_{1} \times \vec{u}_{2}\right) \cdot\left(\vec{d} \times \vec{u}_{2}\right)}{\left\|\vec{u}_{1} \times \vec{u}_{2}\right\|^{2}} \\
& r_{2}=\frac{\left(\vec{u}_{1} \times \vec{u}_{2}\right) \cdot\left(\vec{d} \times \vec{u}_{1}\right)}{\left\|\vec{u}_{1} \times \vec{u}_{2}\right\|^{2}}
\end{aligned}
$$

Finally, the midpoint is $\frac{1}{2}\left(\vec{p}_{2}+\vec{p}_{1}\right)=\frac{1}{2}\left(\vec{x}_{1}+r_{1} \vec{u}_{1}+\vec{x}_{2}+r_{2} \vec{u}_{2}\right)$.

[^0]
[^0]: ${ }^{1}$ https://en.wikipedia.org/wiki/Cross_product
 ${ }^{2}$ https://en.wikipedia.org/wiki/Cross_product\#Lagrange.27s_identity

