
Documentation of 3D Particle Tracking Velocimetry

Technical aspects, Installation, Handling, Software Architecture

by Jochen Willneff, October 2003

1. Installation and Handling of the PTV-Software

The ptvmanual.pdf contains information to use the software and gives a
description of the input data file which have to be provided.

The test data set contains the following:

Cam1 Cam3.addpar man_ori.dat
Cam1.addpar Cam3.ori parameters/
Cam1.ori Cam4 ptvmanual.pdf
Cam2 Cam4.addpar res/
Cam2.addpar Cam4.ori start.bat
Cam2.ori calFieldApril.txt
Cam3 img/

Images for calibration, camera orientation data, files for additional parameters
as well as the coordinate file of the points on the reference. In man_ori.dat
the manually measured image coordinates for the pre-orientation (for
calibration purpose) are stored.

- subdirectory /img contains the image sequences
- subdirectory /res for storage of results
- subdirectory /parameters contains the parameter files

The data mentioned above are the data for the experiment itself. To avoid
confusion this data should be kept separated to the software data!

The software for PTV is stored under /tk84ptv. To start the software >>
click double on start.bat, which establishes the link to the software.
Project and software data should not be confused. To start the software it is
sufficient that a start.bat file, thus the software (and code) can be stored
independently.

2. Tcl/Tk-Installation

The install executable for Tcl/Tk is ActiceTcl8.4.2-win32-ix86.exe in
this directory. Or can be downloaded from a webpage. Download under:

http://downloads.activestate.com/ActiveTcl/Windows/8.4.2/

After installing Tcl/Tk 8.4.2 all files with extension #.tcl should appear with
the Tcl/Tk-symbol (feather). Otherwise repeat installation. Make sure that the

flag for the extensions (*.tcl) is included in the path. Otherwise not all
needed dll-files can be found from arbitrary directories on the PC.

3. Compilation of TIFF library

The handling of TIFF images requires a according library libtiff.lib and
the files tiff.h, tiffio.h and tiffvers.h. If these files are not
available, they can be generated as described in the following. Download file
tiff-v3.5.7.zip from the webpage www.libtiff.org. It’s also possible
to use the newer version tiff-v3.6.0.zip. Both versions were tested for
Windows2000 and WindowsXP. After unzip change to /libtiff, where you
will find the file named makefile.vc.
In the header of this file the command (nmake /f makefile.vc all) to
compile the library with nmake is given. It is also possible compile with
Microsoft Visual C++. To open the makefile in the right way, change the
filename from makefile.vc to makefile.mak. Only the files
libtiff.lib, tiff.h, tiffio.h and tiffvers.h are necessary for PTV
(and may be copied in the directory /tk84ptv/src_c, if done so no paths
have to be adjusted for the compilation of PTV).

4. Compilation of the source code of PTV

In the /tk84ptv directory You will find the following data:

index script to generate tclIndex (/ might be missing in the generated

tclIndex!)
ptv.tcl main script to start graphical user interface (Windows)
ptvunix.tcl dito for Unix
start start file for Unix
tclIndex Index with relative paths to Tcl functions
/src_c source code directory
/src_tcl tcl script directory

The contents of the /src_c:
change_parameter.c jw_main.c segmentation.c
checkpoints.c jw_ptv.c sortgrid.c
correspondences.c libtiff.lib unixmakefile
demo.c lsqadj.c tiff.h
draw.c mousefunction.c tiffio.h
epi.c multimed.c tiffvers.h
globals.h orientation.c tools.c
homemakefile peakfitting.c track.c
homemakefile.mak pointpos.c trafo.c
image_processing.c ptv.c ttools.c
imgcoord.c ptv.h typedefs.h
intersect.c ray_tracing.c vrml.c
jw_ImgFmtTIF.c rotation.c

The contents of the /src_tcl:

button.tcl display.tcl mainpar.tcl
calpar.tcl draw.tcl trackpar.tcl

The source code is written in C in combination with Tcl/Tk. The directory
/src_c contains a makefile (homemakefile.mak) which can be open with
Microsoft Visual C++. During opening this file, a new workspace will be
generated.
NOTICE! The following paths to the libs in the makefile have to be adjusted:

INC_DIR1 = C:\Tcl\include\

TCL_LIB = C:\Tcl\lib\tcl84.lib
TK_LIB = C:\Tcl\lib\tk84.lib
TIFF_LIB = H:\tk84ptv\src_c\libtiff.lib

An alternative is the compilation with nmake in the DOS prompt. For
compilation in the DOS prompt first perform vcvars32.bat for initalization, after
that:

nmake -f homemakefile.mak

IMPORTANT! Before running the software some paths have to be set.
start.bat may contain:

G:/tk84ptv/src_c/jw_prog G:/tk84ptv/ptv.tcl

This has to be modified to the actual position on the PC. First the path to the
jw_prog.exe followed by the path to the ptv.tcl script file.

In addition, change path in first line of ptv.tcl (use # for comments):

set auto_path "G:/tk84ptv . $auto_path"

Change to according path on PC! The start.bat should be copied to the
project data directory. Start with double click!

5. 3D PTV source code

Authors: Hans-Gerd Maas / Jochen Willneff
Address: Institute of Geodesy and Photogrammetry
 ETH – Hoenggerberg
 CH - 8093 Zurich

Functions in jw_ptv.c:

init_proc_c

initialization, allocation of memory for image data, reading of
parameter files

- parameters/ptv.par
- parameters/criteria.par
- parameters/sequence.par

call of parameter_panel_init, to fill Tcl/Tk sheets

start_proc_c

reading of parameters/ptv.par

create file names for low and high pass image and ori/addpar data

Reading orientation data from file, reading image
Allocation of tracking structure

pre_processing_c

reading of parameters/unsharp_mask.par, default value 12, if not
existing, call of highpass, with optional display

detection_proc_c

reading of parameters/pft_version, switch pft for peak fitting

three cases:

 - 3, call of peak_fit_new
 - 0, call of simple_connectivity
 - 1, call of targ_rec

mostly peak_fit_new was used recently
call of quicksort_target_y, to sort detected particles

correspondences_proc_c

Transformation from pixel to metric coordinates with call of
 - pixel_to_metric
 - correct_brown_affin

sort coordinates for binary search with quicksort_coord2d_x
reading of parameters/criteria.par

calculation of look up table for multimedia radial displacement
 - init_mmLUT, performed only once!

search for correspondences with most important function!
 - correspondences_4

create #_targets data for each image, writing data to *_targets files

determination_proc_c

create res/dt_lsq file, call of function for 3D coordinate determination
 - det_lsq, writing data to res/dt_lsq file,

sort coordinates for binary search in epi line segment drawing
 - quicksort_coord2d_x

sequence_proc_c

reading of parameter file parameters/sequence.par, first and last
time step of sequence

create file names, res/rt_is.#
processing of each time step with
 - read_image
 - pre_processing_c
 - detection_proc_c
 - correspondences_proc_c
 - determination_proc_c

calibration_proc_c

reading of parameters/unsharp_mask.par, default value 12, if not
existing

8 cases, switch set by sel:

 - 1, read calibration parameter file parameters/cal_ori.par
 create file names, call of read_image

 - 2, detection procedure, call of pre_processing_c, target
 recognition by call of targ_rec, reading
 parameters/detect_plate.par, writing #pix files for each image

 - 3, manual orientation, read parameters/man_ori.par, interactive
 measurement of four reference points in each image, writing
 pixel coordinates to file man_ori.dat, can be used for further
 orientation calculation, see case 4

 - 4, read points numbers from parameters/man_ori.par, read pixel
 coordinates of older pre-orientation from man_ori.dat, display

 - 5, sort grid, read coordinate from reference body,
 read orientation and addpar files, calculation of raw orientation
 with 4 points by call of raw_orient, write orientation data,
 call of write_ori, sorting of detected points by
 back-projection by call of sortgrid_man, with display,
 if examine is set to 4, create files for dump dataset,
 allowing layerwise calibration

- 6, orientation, if examine set to 4, reading files for layerwise calibration, else
calculation of resection by call of orient, if examine set to 4, read dumped
data sets first, then call orient, write results in ori and addpar files

- 7, checkpoint_proc, to display residuals of checkpoints

 - 8, draw additional parameter figures, display regular grid and
 (exaggerate) distorted grid

quit_proc_c

free memory, delete unneeded file and quit

6. PTV argument examine

The start.bat file without using the examine option is similar to:

H:/prog/tk84ptv/src_c/jw_prog H:/prog/tk84ptv/ptv.tcl

Different examine options can be set by the start of
PTV (e.g. .../jw_prog .../ptv.tcl 4)

1 (or any number) more details on output during orientation
 (calibration), double zoomfactor, creates #_pix files

3 to save low pass image,
 doesn't work on Windows system, sorry!

4 creates ASCII output with 3D object point list and
 referring image coordinates for calibration with dumped
 data sets, detailed descriptions see below.

5 more detailed output for statistical examinations
 of Qvv, Qxx at determination of particle positions
 and during orientation (calibration)

10 gives information about average and expected number of
 touch events and the average number of pixel per target,
 at detection of particles

Option 4 is used for the calibration with different z-positions of the reference
body. The examine option appears in the following source code files:

draw.c: if (examine && zoom_f[nr] > 2)
jw_ptv.c: int examine = 0; /* for
more detailed output */
jw_ptv.c: valp = Tcl_GetVar(interp, "examine",
TCL_GLOBAL_ONLY);
jw_ptv.c: examine = atoi (valp);
jw_ptv.c: if (examine == 4)
jw_ptv.c: if (examine == 4)
jw_ptv.c: if (examine) for (i=0; i<n_img; i++)
jw_ptv.c: if (examine == 4)
jw_ptv.c: if (examine == 4)
jw_ptv.c: if (examine != 4)
jw_ptv.c: if (examine == 4)
mousefunction.c: if (examine) zf *= 4;
orientation.c: if (examine) for (i=0; i<16; i++)
peakfitting.c: if (examine==10)
pointpos.c: if (examine == 5)
segmentation.c: if (examine == 3)
segmentation.c: if (examine == 3)

How to calibrate with different z-positions of the reference body?

Set examine = 4!

After the Detection (case 2, under calibration) #_pix files are generated,
which lists the detections of each view (no correspondences, only image
coordinates), was used for template matching outside of PTV, not used for
further processing steps (could be removed or commented in the code).
--->> continue as usual!!!

During Sortgrid (case 5, under calibration) a file dump_for_rdb is created.
This is a list of the 3D points with the according 2D image coordinates of each
view. Is not used for further steps.
--->> continue as usual!!!

Important!!! In Orientation (case 6, under calibration). For each z-position
an according 3D coordinate file has to be provided (File of Coordinates
on Plate, at Calibration Parameters has to be adjusted for that!!!)

During Orientation with examine set to 4, please consider the DOS prompt.
You will be asked:

Resection with dumped datasets? (y/n)

Answer with n in the DOS prompt to write data to disk, which will later be used
for the common calibration. For each camera you have to answer individually
(up to four times depending on the number of cameras)!

The files, which are created have the following name structure:

resect_#.crd, containing the corrected metric image coordinates
(e.g. resect_Cam1.crd).

resect_#.fix, containing the 3D coordinates of the active reference
body file (e.g. resect_Cam1.fix).

After the generation of these files, the different file names have to be adjusted
to a sequential structure:

resect.fix0 3D reference body file of z-position 0
resect.fix1 3D reference body file of z-position 1
resect.fix2 3D reference body file of z-position 2

... and so on.

For each camera and each z-position a set of metric image coordinates
has to be provided with the following names:

resect_0.crd0 metric image coordinates of camera 0 at z-position 0
resect_0.crd1 metric image coordinates of camera 0 at z-position 1
resect_0.crd2 metric image coordinates of camera 0 at z-position 2

resect_1.crd0 metric image coordinates of camera 1 at z-position 0
resect_1.crd1 metric image coordinates of camera 1 at z-position 1
resect_1.crd2 metric image coordinates of camera 1 at z-position 2

resect_2.crd0 metric image coordinates of camera 2 at z-position 0
resect_2.crd1 metric image coordinates of camera 2 at z-position 1
resect_2.crd2 metric image coordinates of camera 2 at z-position 2

resect_3.crd0 metric image coordinates of camera 3 at z-position 0
resect_3.crd1 metric image coordinates of camera 3 at z-position 1
resect_3.crd2 metric image coordinates of camera 3 at z-position 2

... and so on.

After the generation of this file structure, it's recommended to save these files
first before continuing with the calibration. Restart PTV, press Show Calib.
Image and continue directly with Orientation, consider the DOS prompt.
Now answer to

Resection with dumped datasets? (y/n)

with y for each individual camera (again up to four times depending on the
number of cameras), #.ori and #.addpar file are generated according to
the given cameraname (e.g. Cam1.ori, Cam1.addpar). The orientation
and additional parameters for each individual cameras are calculated in a
common adjustment of all z-positions.

7. Using C code in connection with Tcl/Tk

The source code of PTV, which is written in C is connected to a graphical user
interface realized in Tcl/Tk. This requires the declaration and initilization of
commands.
In jw_main.c the C function main is called. In this function only the
initialization for the Tcl/Tk application is performed. The main just calls the
function Tk_Main(argc, argv, Tcl_AppInit), also included in jw_main.c,
which starts the function Tcl_AppInit(interp), (in jw_main.c).
Tcl_AppInit(interp) calls the function jw_Init (again in jw_main.c).
With the call of jw_Init the additional Tcl/Tk commands are defined. For
example:

Tcl_CreateCommand(interp, "start_proc_cmd", start_proc_c,
 (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);

The name of the defined Tcl/Tk command is start_proc_cmd. This command
can be used in the Tcl/Tk script. The related C function start_proc_c is
evaluated, when start_proc_cmd is called.
The C function is defined as Tcl/Tk command in ptv.h like this:

extern Tcl_CmdProc start_proc_c;

In addition the function itself has to be defined in global.h:

int start_proc_c();

For the actual implementation the function needs some Tcl/Tk related
arguments:

int start_proc_c(ClientData clientData, Tcl_Interp*
interp, int argc, const char** argv)

To call the function from the Tcl/Tk script (in this case by pressing the button
"Start", see in ptv.tcl):

button .mbar.start -text "Start" –command
"start_proc_cmd; bindingsstart "

The option -command also allows the combination with other commands or
function calls. In this example with bindingsstart, which defines the current
mouse functions.

If these C functions are called from some other C function and not from the
Tcl/Tk script do like this:

pre_processing_c (clientData, interp, argc, argv);

Exchange of variables between C and Tcl/Tk

In the C source code and the Tcl/Tk script variables have to be exchanged.
This is the case for reading and writing the input data from the input files and
the Tcl/Tk sheets.
The according variable is defined in the C code as well as in Tcl/Tk (e.g.
n_img in C refers to mp(ncam) in Tcl/Tk). The reading of the input files is
realized in C. The exchange to Tcl/Tk is done by the commands:

Tcl_SetVar2 and Tcl_GetVar2

Remarks:
- Tcl/Tk treats the variables as string (therefore char type in C)
- Tcl_SetVar2, Tcl_GetVar2 (not Tcl_SetVar, Tcl_GetVar) are used
 to be able to define variables in vector structure

Example in src_tcl/mainpar.tcl:

global mp
mp is the structure for all main parameters. mp(ncam) represents a specific
parameter

The exchange works the following way, from C to Tcl/Tk (see in function
parameter_panel_init in src_c/change_parameter.c):

int parameter_panel_init(Tcl_Interp* interp)
{
 char val[256];

 /* read 20 parameters from ptv.par */
 fp1 = fopen_r ("parameters/ptv.par");

 fscanf (fp1, "%s", val);
 Tcl_SetVar2(interp, "mp", "ncam", val, TCL_GLOBAL_ONLY);

 fclose (fp1);
 return TCL_OK;
}

The parameter is read from the input file to C variable val, its value is
transferred (Tcl_SetVar2) to Tcl/Tk variable mp(ncam) and is available in
the Tcl/Tk scripts. From Tcl/Tk to C (see in function done_proc_c in
src_c/change_parameter.c):

int done_proc_c(ClientData clientData, Tcl_Interp*
interp, int argc, const char** argv)
{
 const char *valp;

 /* rewrite all parameter files */
 fp1 = fopen ("parameters/ptv.par", "w");

 valp=Tcl_GetVar2(interp, "mp", "ncam", TCL_GLOBAL_ONLY);

 fprintf (fp1, "%s\n", valp);
 fclose (fp1);
 return TCL_OK;
}

Parameter mp(ncam) from Tcl/Tk is transferred (Tcl_GetVar2) to C variable
valp and written to file.

ATTENTION!!! valp is a char type. For later use in C (for calculations) this
variable may has to be converted, for e.g. to integer:

 valp = Tcl_GetVar(interp, "examine", TCL_GLOBAL_ONLY);
 examine = atoi (valp);

8. 3D PTV data acquisition and setup parameters

The processing of the image sequences from PTV experiments requires some
information about the hardware configuration. From the used cameras at least
a rough estimation of the focal length, size of the pixel in x- and y-direction
and the image size (in pixel) itself has to be specified.
To be able to model the multimedia geometry the refractive index of the fluid
and glass plate as well as the glass plate thickness has to be known.
For calibration purposes the coordinates of the used reference body have to
be specified. The boundary of the glass plate and fluid defines the x-y-plane
(z = 0). The coordinate file of the reference body has to be edited according to
its actual position, which requires the knowledge of the distance of the
reference body to the inner glass plate side.

The image sequences have to be provided according to the following
convention. For the sequence of each camera the filename is a combination
of a base name and a number of the current time step. No extensions after
the current number of the time steps are possible.

Example, basename: cam1., time steps from 1 to 1001, the files have to be
provided with the following names:

cam1.001 … cam1.009, cam1.010 … cam1.099, cam1.100 … cam1.999,
cam1.1000, cam1.1001

