
Python Bindings to PTV library 

 

1) Changes  in C source code to compile as dll. 

1.1) Add #include"exp_dll_so.h" to globals.h.  

exp_dll_so.h is needed when compiling for win32 platform and defines 

__declspec(dllexport)macro (EXPORT definition). 

//======  exp_dll_so.h ========================== 

#ifndef __EXP_DLL_SO_H 

#define __EXP_DLL_SO_H 

 

#ifdef BUILD_DLL 

 #define EXPORT __declspec(dllexport) 

 #include<windows.h> 

#else 

 #define EXPORT  

#endif 

#endif 

//=============================================== 

 

 

1.2) Include dll entry point in  only one of the source files (doesn’t matter which – 

only needed when we compile dll form several sources – for our example in 

lsqadj.c). Not needed when compiling for linux platform. 

BOOL APIENTRY DllMain(HANDLE hModule, DWORD dwReason, LPVOID  

 

lpReserved) 

 { 

  return TRUE; 

} 

1.3) For each function that we will use externally (from python), we need to add 

EXPORT definition before function declaration (in globals.h): 

For example: EXPORT void pixel_to_metric(); 

 

1.4) Each global variable that is defined in globals.h as “extern” need to be redefined 

as EXPORT. For example:   EXPORT int  n_img; 

1.5) Several pointers to arrays that are used in globals.h need to be redefined in the 

following way: 

 Exterior Ex[]   Exterior  *Ex 

 

Note: steps 1-4 are needed for WIN32 platform only 



1.6) All references to tcl/tk are wiped from ptv.h 

 

2) Compiling 

2.1 Win32 Platform, using Visual Studio 2008 Express (freeware) 

2.1.1 As example, we combine lsqadj.c and pointpos.c into single dll. In order to compile 

them, besides the changes described in 1.1-1.5 we need to compile together with 

multimed.c, imgcoord.c, intersect.c, ray_tracing.c, trafo.c since functions in these files  

are referenced from lsadj.c and pointpos.c 

Compiling: 

a) Enter Visual Studio 2008 command prompt 

b) Enter following command: 

 

cl -LD -DBUILD_DLL lsqadj.c pointpos.c multimed.c imgcoord.c intersect.c 

ray_tracing.c trafo.c -Felsq_point.dll 

File that was produced is lsq_point.dll that we will use from python. 

 

Flags: 

-LD – our target is .dll not exe 

-DBUILD_DLL - we use this only on win32 platform (see exp_dll_so.h) 

-Fe – output dll name. 

 

2.2 Linux platform, using gcc 

For the example described in 2.1.1: 

2.2.1 Enter directory with source code. 

2.2.2 Compile: 

gcc -c -fPIC lsqadj.c pointpos.c multimed.c imgcoord.c intersect.c ray_tracing.c trafo.c 

 

this will compile the c files and will make .o object files. 

2.2.3 Link: 

gcc -shared lsqadj.o pointpos.o multimed.o imgcoord.o intersect.o ray_tracing.o trafo.o -o 

lsq_point.so 

 

The output will be file named lsq_point.so which is our library.  



Note: for linux/unix compling make sure that code mentioned in 1.2 is commented in 

source file. 

 

On Mac OS X 10.6 

gcc -c -fPIC -arch i386 -arch x86_64 lsqadj.c pointpos.c multimed.c imgcoord.c 

intersect.c ray_tracing.c trafo.c 

 

gcc -shared lsqadj.o pointpos.o multimed.o imgcoord.o intersect.o ray_tracing.o trafo.o -

arch i386 -arch x86_64 -o lsq_point.so 

% > python test.py  

[ 1.  2.  3.  4.  5.  6.  7.  8.] 

[ 0.  0.  0.  0.  0.  0.  0.  0.] 

[ 1.  5.  2.  6.  3.  7.  4.  8.] 

 

Great !!!! 

 

 

3) Making binding to python. 

There are few options for binding C code to python. We use ctypes as method known for 

it’s simplicity, minor changes in C code, and good integration with numpy. For other 

options, see: 

http://www.suttoncourtenay.org.uk/duncan/accu/integratingpython.html 

 

Now when we have lsq_point.dll for windows and lsq_point.so for linux we can make 

binding for python named lsq_point.py that converts input/output parameters from .dll or 

.so to python numpy arrays. In this example we make binding to mat_transpose function 

described in lsqadj.c: 

 

============= lsq_point1.py====================================== 

import numpy as nm 

import ctypes as ct 

 

test_lib = nm.ctypeslib.load_library('lsq_point', '.') 

 

# Set up interfaces 



test_lib.mat_transpose.argtypes= [ct.POINTER(ct.c_double),ct.POINTER(ct.c_double), ct.c_int, ct.c_int] 

 

# Define python function. 

def mat_transpose(mat1, mat2, m, n):   

test_lib.mat_transpose(mat1.ctypes.data_as(ct.POINTER(ct.c_double)), mat2.ctypes.data_as(ct.POINTER(ct.c_double)), m, n) 

  return 

============================================================== 

 

Few explanations: 

test_lib = nm.ctypeslib.load_library('lsq_point', '.') – loads lsq_point.dll or lsq_point.so to test_lib. 

 

test_lib.mat_transpose.argtypes= [ct.POINTER(ct.c_double),ct.POINTER(ct.c_double), ct.c_int, ct.c_int]  - 

describes input data types in terms of ctypes datatypes.  

 

Last 3 lines in lsq_point1.py defines mat_transpose python function that will use mat_transpose C function 

by using numpy arrays mat1, mat2. Note for build in datatypes conversions numpy->ctypes:  

 

mat1.ctypes.data_as(ct.POINTER(ct.c_double)) 

 

 

Test code that uses our new created bindings: 

 

======= test.py =================================== 

import lsq_point1 as lsq 

import numpy as nm 

 

data1 = nm.array([1.,2.,3.,4.,5.,6.,7.,8.]) 

data2 = nm.array([0.,0.,0.,0.,.0,0.,0.,0.]) 

print data1 

print data2 

lsq.mat_transpose(data1, data2, 2, 4) 

print data2 

================================================ 

 

 

 



  



4. Creating bindings with help of Cython 

As an example, we create bindings for lsqadj.c, for 2 functinos : 

a) void ata(double *a, double *ata, int m, int) 

b) void mat_transpose (double *mat1, double *mat2, int m, int n) 

 

4.1  We create ptv1.pyx which is a Cython file with necessary declarations: 

 

======= ptv1.pyx ========================================== 

cimport numpy as np 

cdef extern void ata(double *a, double *ata, int m, int) 

cdef extern void mat_transpose (double *mat1, double *mat2, int m, int n) 

 

def p_ata(np.ndarray s, np.ndarray sata, m, n): 

         ata(<double *>s.data, <double *>sata.data,m,m) 

  

def p_mat_transpose(np.ndarray s, np.ndarray sata, m, n): 

         mat_transpose(<double *>s.data, <double *>sata.data,m,n) 

 

Here we define p_mat_transpose which is python function that converts numpy arrays to pointers 

to arrays and calls C function mat_transpose 

 

4.2 We create setup.py which is some kind of makefile to compile the extensions: 

 

=========== Setup.py ================================================== 

from distutils.core import setup 

from distutils.extension import Extension 

from Cython.Distutils import build_ext 

 

import numpy as np 

setup( 

    name="ptv1", 

    cmdclass = {'build_ext': build_ext}, 

    ext_modules = [Extension("ptv1", ["ptv1.pyx", "lsqadj.c"], 



                             include_dirs = [np.get_include(),'.'], 

                             extra_compile_args=['-O3'])], 

    py_modules = ['ptv1',], 

) 

 

In this example we make use of single lsadj.c file only . If extension module is compiled from 

several sources, replace ext_modules line with: 

ext_modules = [Extension("ptv1", ["ptv1.pyx", "lsqadj.c", “source2.c”,”source3.c”], 

 

4.3 Compiling 

Enter source directory and enter:  

python setup.py build_ext –inplace  

As a result, ptv1.so is created 

 

4.4 Testing 

Self explaining test.py to test the module: 

====== test.py ================================================== 

import ptv1 as ptv 

import numpy as nm 

 

data1 = nm.array([1.,2.,3.,4.,5.,6.,7.,8.], dtype=nm.double) 

data2 = nm.array([0.,0.,0.,0.,.0,0.,0.,0.], dtype=nm.double) 

print data1 

print data2 

ptv.p_mat_transpose(data1, data2, 2, 4) 

print data2 

 

 


